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LETTER TO THE EDITOR 

On wave propagation in fluids of polyatomic molecules 

J M Rubi and J Casas-Vizquez 
Departamento de Termologia, Universidad Aut6noma de Barcelona, Bellaterra 
(Barcelona), Spain 

Received 15 July 1980 

Abstract. Making use of the Muller theory of irreversible processes, some solutions of the 
momentum and internal angular morhentum balance equations of a fluid of polyatomic 
molecules are studied. When one considers only dissipative phenomena described by the 
rotational viscosity, it is seen that even in the case in which the spin and the vorticity coincide 
we can have normal mode solutions for the velocity and spin. 

In the study of fluids of polyatomic molecules it is necessary to introduce some new 
hydrodynamical variables in order to take account of the internal state of each 
molecule. The consequence of the structure of the molecules is that the pressure tensor 
is not symmetric and therefore the angular momentum is not conserved. So one 
introduces a new angular momentum, often called the internal angular momentum (de 
Groot and Mazur 1969), which can be written 

S = jw, (1) 

where j is the mean moment of inertia and w is the spin, responsible for the internal 
rotations. The balance equations of the momentum and of the internal angular 
momentum of a fluid with spin (Snider and Lewchuk 1967) or a micropolar fluid 
(Eringen 1966) are respectively 

plj +V . P = F, 
pj; +V . Q =  -2P'". w + N ,  

(2) 

(3) 

where p is the density, U is the velocity, P is the pressure tensor, Q is the spin flux, P'" is 
the axial vector related to the antisymmetric part of the pressure tensor, and F and N 
are the external force and external couple respectively. An upper dot stands for 
material derivation. 

In order to solve the differential system (2) and (3) it is necessary to introduce 
constitutive equations for the fluxes that appear in such equations. In the framework of 
the local equilibrium hypothesis these constitutive equations can be obtained from a 
Gibbs equation in the same way that one proceeds with classical fluids (Baranowski and 
Romotowski 1964, Snider and Lewchuk 1967). On the basis of the Muller theory 
(Muller 1967, Jou et a1 1979, Lebon et al 1980) it is possible to obtain a set of 
constitutive equations which include temporal derivatives of the fluxes and non-linear 
terms. In the linear approach these equations reduce to that obtained with the local 
equilibrium hypothesis (Rubi and Casas-Vizquez 1980). 
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The purpose of this Letter is to study some solutions of the balance equations (2) 
and (3) and their implication in the decay of the spin towards the vorticity. For the sake 
of simplicity we focus attention on fluids with viscous dissipative phenomena due only to 
the difference between the spin and the vorticity. Furthermore we consider that the 
spin flux and the pressure gradient vanish, and likewise convective effects are 
neglected. In this case equations (2) and (3) can be rewritten 

(4) 

( 5 )  

pt; = -77, curl (curl U - 20) - ~ , ~ p u ,  

pjh = 2rl,(curl U - 20) - rlrepjc;i, 

where 77, is the rotational viscosity, and E is defined through the expression (Rubi and 
Casas-Vhzquez 1980) 

as/aPVa = -p-l T - ~ E P ~ ~ ,  (6) 
T being the absolute temperature. The quantity 77,~ can be identified with a relaxation 
time T* for the propagation of the signals due to the difference between the spin and the 
vorticity. A trivial solution of (4) and ( 5 ) ,  with T* = 0, can be obtained in the case in 
which curl U is uniform and constant and the spin vanishes initially (de Groot and Mazur 
1969). Thus the spin can be written 

w = $ curl U[I -exp ( - t / ~ ) ] ,  (7) 

T being a relaxation time equal to pj/477,. Equation (7) shows that when t + m ,  
w +$curl U, and therefore the fluid can be described by means of the classical 
Navier-Stokes equation. When T* # 0, the solution for the spin is (Rubi and Casas- 
Vhzquez 1980) 

w = A exp(r+t) + B exp(r-t) +$ curl U, (8) 
A and B being two constants and ri. being given by 

1 r* = ~ e [ - l / ~ , *  ( 1 / ~ :  - 1 6 ~ / p j ) ~ ’ ~ I .  (9) 
In the same way as Kranyi (1977) we consider here solutions of equations (4) and ( 5 )  of 
the form 

u(r, t ) = t ) , k  exp[-i(vt-k.r)], (10) 

w(r,  t)=w,k exp[-i(vt-k.r)], (11) 

where v is the frequency (in general, complex) and k the wavevector. Inserting (10) and 
(11) in (4) and ( 5 )  one obtains the relation 

l),k = -$ij(k x U&). (12) 
Equations (4), (3, (10) and (11) with the wavevector such that k = (k, 0,O) lead to the 
dispersion equation 

(13) 
In the limit case when the relaxation time T* vanishes, one obtains the dispersion 
equation 

2 2 q,epjv - 477, + vpfi = qrjk . 

v = -(vr/pj)(4 +ik2)i, (14) 

v = -(1/27*){1 +[I +477*7*(4 + jk2)/pj]’”}i. 

which describes the rotational mode. In any other case (13) leads to 

(15) 
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Of interest is the case in which the spin and the vorticity coincide. From equations (4), 
( 5 ) ,  (10) and (11) we have 

U = -(l/T*)i. (16) 
This equation indicates that even in this case one can have solutions like (10) and (11) 
which decay to zero depending on the value of T*. As pointed out by some authors 
(Ailawadi and Harris 1972, Pomeau and Weber 1973), since the total angular momen- 
tum must be conserved, any internal angular momentum communicated to a molecule 
creates a vortex which decays until the equilibrium is established. Equation (16) shows 
that, considering the fact that the differences between the spin and the vorticity 
propagate with finite speed, the former process must be modified. 
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